|                | -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | National 5 Chemistry                                       |                                                    |                                               |                                                    |            |   |     |              | ffic L   | ight    |
|----------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------|------------|---|-----|--------------|----------|---------|
|                | JAB                                   | AlsNutronal 5 chemistryJAIShemUnit 2.1c Alkeneschemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |                                                    |                                               |                                                    |            |   |     |              |          | reen    |
| <b>T</b><br>11 | Alkenes are<br>are t<br>are i<br>cont | a homolog<br>ised to ma<br>nsoluble in<br>ain the C=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gous serie<br>ke polym<br>n water<br>C double<br>nted by t | ers and alcohols                                   | l hydrocarbons<br>group                       | d)                                                 | T          | 3 | (I) | <del>و</del> |          |         |
|                | Straight-cha                          | in alkenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | can be di                                                  | rawn. The positi                                   | on of the double                              | e bond must be indica                              | ted in the | е |     |              |          |         |
|                | name for all                          | tenes with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | four or n                                                  | nore carbons in                                    | the main chain.                               |                                                    |            |   |     |              |          |         |
|                | Alkane                                | Molecular<br>Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Short                                                      | ened Formula                                       |                                               | Structural Formula                                 |            |   |     |              |          |         |
|                | Ethene                                | $C_2H_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cl                                                         | H <sub>2</sub> =CH <sub>2</sub>                    |                                               | н– <i>с</i> =с–н<br>н н                            |            |   |     |              |          |         |
|                | Propene                               | $C_3H_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CH                                                         | 3CH=CH2                                            |                                               | н<br>н−с−с=с−н<br>н н н                            |            |   |     |              |          |         |
|                | But-1-ene                             | $C_4H_8 \qquad \begin{array}{c} C_{4}H_{8} \\ C_{4}C_{2}C_{12}C_{12}C_{12} \\ H_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_$ |                                                            |                                                    |                                               |                                                    |            |   |     |              |          |         |
|                | But-2-ene                             | $C_4H_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CH <sub>3</sub>                                            | CH=CHCH₃                                           |                                               | н н н н<br>     <br>н-С-С=С-С-н<br>  н             |            |   |     |              |          |         |
| 12a            | Pent-1-ene                            | $C_{5}H_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH₃CH                                                      | 2CH2CH=CH2                                         | н                                             | ӊӊӊ<br>- <i>с</i> -с-с-с=с-н<br>ӊӊӊӊ               |            |   |     | :            | <b>:</b> | :       |
| 13a            | Pent-2-ene                            | $C_{5}H_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>2</sub> CH                                         | I=CHCH <sub>2</sub> CH <sub>3</sub>                | H—                                            | н нн<br>-c-c=c-сн<br>нннн                          |            |   |     |              |          |         |
|                | Hex-1-ene                             | C <sub>6</sub> H <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CH <sub>3</sub> CH <sub>2</sub>                            | CH <sub>2</sub> CH <sub>2</sub> CH=CH <sub>2</sub> | ہ<br>۲—۲<br>۲                                 | ┤ Ӊ Ӊ Ӊ<br>С—С—С—С—С=С—Н<br>┤ Ӊ Ӊ Ӊ Ӊ Ӊ            |            |   |     |              |          |         |
|                | Hex-2-ene                             | $C_6H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CH <sub>3</sub> CH <sub>2</sub>                            | CH <sub>2</sub> CH=CHCH <sub>3</sub>               | н<br>н—с-<br>                                 | нн н<br>сс                                         | ł          |   |     |              |          |         |
|                | Hex-3-ene                             | $C_{6}H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub>                            | CH=CHCH <sub>2</sub> CH <sub>3</sub>               | н<br>н—с<br>н                                 | ⊢н нн<br>−с−с=с−с−с−н<br>⊥нннн                     |            |   |     |              |          |         |
|                | Hept-1-ene                            | C7H14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH <sub>3</sub> CH <sub>2</sub> CI                         | H2CH2CH2CH=CH2                                     | н<br>н–с–<br>н                                | ӊӊӊӊ<br>- <i>CCCC</i> =- <i>C</i><br><u>ӊӊӊ</u> ӊӊ | Н          |   |     |              |          |         |
|                | Oct-1-ene                             | $C_{8}H_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub> CH                         | 2CH2CH2CH2CH=CH2                                   | н н<br>3—3—н<br>4 н                           | Ч                                                  | -н         |   |     |              |          |         |
|                | Alkenes wit                           | h branches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s can be d                                                 | rawn:                                              | <u>ц</u> ц                                    | Н                                                  |            |   |     |              |          |         |
|                | н<br>н—с'-<br>н                       | н-с-н<br>-3—3<br>-3—3—3<br>н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | –н                                                         | −С==С-<br>Н́н-с-⊦                                  | -с_с_н<br>н н                                 | н-С-нн<br>-с-с-с-с-с-<br>н н н н                   | -н         |   |     |              |          |         |
| 12b            | 2-met                                 | hylbut-2-e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ene                                                        | 2-methyll                                          | out-1-ene                                     | 3-methylbut-1-                                     | ene        |   |     | 3            | $\odot$  | $\odot$ |
| 13b            | н<br>н—с-<br>н́ь                      | н-С-нн<br>–с=с–с–<br>+-С-н Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -н                                                         | н<br>–с=с–<br>н н                                  | <sup>ң</sup><br>ŀ-с-нң<br>-с_с_н<br>-с-н<br>- | нн-<br>нн-<br>н-<br>с=<br>с-                       | н          |   |     |              | 9        |         |
|                | 2,3-dim                               | н<br>ethylbut-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-ene                                                      | 3,3-dimethy                                        | н<br>/lbut-1-ene                              | н<br>methylproper                                  | ie         |   |     |              |          |         |

|            | 540         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | T | Traffic Li |     |     |
|------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---|------------|-----|-----|
|            | JAD<br>chem | Unit 2.1c Alkenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JA19<br>chem | - |            | Red | Red |
| 14a<br>15a | Alkenes und | dergo addition reactions with hydrogen forming alkanes, known as hydrog<br>$\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | genation     |   | ē          | 3 😄 | 0   |
| 14b<br>15b | Alkenes und | dergo addition reactions with halogens forming dihaloalkanes<br>H H H F Br<br>$H C - C - C = C - H + Br - Br \rightarrow H - C - C - C - C - H$<br>H H H H<br>H H H<br>H H H<br>H H H<br>H H H<br>H H H H<br>H H<br>H H H<br>H H<br>H H<br>H H H<br>H H<br>H H H<br>H H<br>H H H<br>H H<br>H H<br>H H H<br>H H<br>H<br>H H<br>H H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |   | Ċ          | 3 ☺ | 0   |
| 14c<br>15c | Alkenes und | dergo addition reactions with water forming alcohols, known as hydration<br>$\begin{array}{cccc}  & H & H & H & OH \\  & H & H & OH \\  & H & H & OH \\  & H & H & H \\  & H & C & C & C & C \\  & H & H & H \\  & H & H & H \\  & H & C & C & C & C \\  & H & H & H \\  & H$ |              |   | E          | 30  | 0   |
|            |             | $C_4H_8$ + $H_2O \longrightarrow C_4H_9OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |   |            |     |     |

| No      | 1t5             |                   | Past Paper Question Bank JABche |             |             |             |             |             |      |      | cher | M |  |  |  |  |
|---------|-----------------|-------------------|---------------------------------|-------------|-------------|-------------|-------------|-------------|------|------|------|---|--|--|--|--|
| majna   | LIGHTS          | Unit 2.1c Alkenes |                                 |             |             |             |             |             |      |      |      |   |  |  |  |  |
| 0.1     | <u>Original</u> | New               | <u>Nat5</u>                     | <u>Nat5</u> | Nat5        | Nat5        | Nat5        | <u>Nat5</u> | Nat5 | Nat5 |      |   |  |  |  |  |
| Outcome | <u>Paper</u>    | <u>Paper</u>      | <u>2014</u>                     | <u>2015</u> | <u>2016</u> | <u>2017</u> | <u>2018</u> | <u>2019</u> | 2020 | 2021 |      |   |  |  |  |  |
| 11      |                 |                   |                                 |             |             | L12a        |             |             |      |      |      |   |  |  |  |  |
| 12a     |                 |                   |                                 |             |             |             |             |             |      |      |      |   |  |  |  |  |
| 13a     |                 |                   |                                 |             |             |             |             |             |      |      |      |   |  |  |  |  |
| 12b     |                 |                   |                                 | 1120        |             |             |             |             |      |      |      |   |  |  |  |  |
| 13b     |                 |                   |                                 | LILU        |             |             |             |             |      |      |      |   |  |  |  |  |
| 14a     |                 |                   |                                 |             | mc11        |             |             | 1560        |      |      |      |   |  |  |  |  |
| 15a     |                 |                   |                                 |             | men         |             |             |             |      |      |      |   |  |  |  |  |
| 14b     |                 | 110-              |                                 |             | L8c(i)      |             |             | I E Laux    |      |      |      |   |  |  |  |  |
| 15b     |                 | LIUC              |                                 |             | L8c(ii)     |             |             | LOD(II)     |      |      |      |   |  |  |  |  |
| 14c     | L8b(i)          | L8c(i)            |                                 | 1 1 2       |             |             | . 10        | . 45        |      |      |      |   |  |  |  |  |
| 15c     | L8b(ii)         | L8c(ii)           |                                 | LIZC        |             |             | mc12        | mc12        |      |      |      |   |  |  |  |  |

| Nat5 | Answer | % Correct | Reasoning                                                                                                                                               |   |   |   |   |   |   |                                                                                          |
|------|--------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|------------------------------------------------------------------------------------------|
| 2016 |        |           | $\mathbbmss{A}$ side groups cannot be placed on $\mathcal{C}_1$ (side groups must be on middle carbons)                                                 |   |   |   |   |   |   |                                                                                          |
| MC   | D      | 75        | $\square B$ 5 carbons in main chain with C=C bon between C <sub>1</sub> & C <sub>2</sub> and -CH <sub>3</sub> groups on C <sub>2</sub> & C <sub>3</sub> |   |   |   |   |   |   |                                                                                          |
| 11   | D      | 15        | ■C C=C double bond must be given lowest numbering system                                                                                                |   |   |   |   |   |   |                                                                                          |
| 11   |        |           | 🗷 D same numbering system must be used at all times (starting on right here)                                                                            |   |   |   |   |   |   |                                                                                          |
| 2018 |        |           | 🗷 A Hydrogenation: Adding hydrogen across a C=C double bond to form alkane                                                                              |   |   |   |   |   |   |                                                                                          |
| MC   | C      |           | B Combustion: burning compound in oxygen to form CO2 and H2O                                                                                            |   |   |   |   |   |   |                                                                                          |
| 12   | C      | -         | -                                                                                                                                                       | - | - | - | - | - | - | $ ensuremath{\mathbb{D}}$ C Hydration: Adding H2O across C=C double bond to form alcohol |
| 16   |        |           | ED Reduction: Gaining electrons                                                                                                                         |   |   |   |   |   |   |                                                                                          |
| 2019 |        |           | ☑A Oct-2-ene produces two products on hydration (octan-2-ol and octan-3-ol)                                                                             |   |   |   |   |   |   |                                                                                          |
| MC5  | ٨      |           | ■B Hex-3-ene produces one product on hydration (hexan-3-ol)                                                                                             |   |   |   |   |   |   |                                                                                          |
| 15   | A      | -         | ■C But-2-ene produces one product on hydration (butan-2-ol)                                                                                             |   |   |   |   |   |   |                                                                                          |
| 10   |        |           | Ethene produces one product on hydration (ethanol)                                                                                                      |   |   |   |   |   |   |                                                                                          |

| Nat5                  | Answer                                                        | Reasoning                                                                                                                                                                              |
|-----------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2015<br><b>12a</b>    | but-2-ene                                                     | but - 2 - ene<br>4 carbons C=C on 2 <sup>nd</sup> carbon C=C double bond                                                                                                               |
| 2015<br><b>12c</b>    | Any structure of<br>3-methylpent-2-ene<br>or 2-ethylbut-1-ene | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                 |
| 2016<br><b>8c</b> (i) | addition                                                      | Bromine add across a C=C double bond in an addition reaction<br>$H H + Br_{2} H H B^{r} B^{r}$ $           $ $H-C-C-C=C-H \longrightarrow H-C-C-C-C-H$ $         $ $H H H H$ $H H H H$ |
| 2016<br>8c(ii)        | $C_{10}H_{16}Br_4$                                            | Limonene has two C=C double bonds and 2 molecules of $Br_2$ will be added<br>to the limonene molecule: $C_{10}H_{16}$ + $2Br_2$ $\longrightarrow$ $C_{10}H_{16}Br_4$                   |
| 2017<br>12a           | C=C double bond<br>or -OH group                               | C=C double bonds are the functional groups found in alkenes<br>Hydroxyl -OH groups are the functional group found in alcohols                                                          |
| 2019<br>5b(i)         | Hydrogenation                                                 | The addition of hydrogen across C=C double bond is known as hydrogenation.<br>The addition of water across C=C double bond is known as hydration.                                      |
| 2019<br>5b(ii)        | Chlorine                                                      | Two chlorine atoms have joined across the location of where the C=C double bond used to be. $Cl_2$ is the reactant in formation of compound Y (1,2-dichloropropane)                    |
|                       |                                                               |                                                                                                                                                                                        |

| Nat5 Past Paper Question Bank |                                  |                     |                     |                     |                     |                     |                     |                     |                     | TARchana            |                     |                     |                     |                     |                     |                     |  |
|-------------------------------|----------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--|
| Traffic                       | Traffic Lights Unit 2.1c Alkenes |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     | UNDEREFT            |                     |                     |                     |  |
| Outcome                       | <u>Int2</u><br>2000              | <u>Int2</u><br>2001 | <u>Int2</u><br>2002 | <u>Int2</u><br>2003 | <u>Int2</u><br>2004 | <u>Int2</u><br>2005 | <u>Int2</u><br>2006 | <u>Int2</u><br>2007 | <u>Int2</u><br>2008 | <u>Int2</u><br>2009 | <u>Int2</u><br>2010 | <u>Int2</u><br>2011 | <u>Int2</u><br>2012 | <u>Int2</u><br>2013 | <u>Int2</u><br>2014 | <u>Int2</u><br>2015 |  |
| 11                            |                                  |                     | L12a(i)             |                     |                     |                     |                     |                     | mc13                |                     |                     |                     |                     |                     |                     | mc17                |  |
| 12a<br>13a                    | mc14                             |                     |                     |                     |                     | mc12                |                     |                     |                     |                     |                     | mc13                |                     |                     |                     |                     |  |
| 12b<br>13b                    |                                  |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |  |
| 14a<br>15a                    |                                  |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     |  |
| 14b<br>15b                    |                                  |                     | L12a(ii)            |                     |                     |                     |                     |                     |                     |                     | L5d                 |                     |                     |                     |                     |                     |  |
| 14c<br>15c                    | mc10                             | mc13                |                     |                     | mc14                | L6a(ii)             |                     |                     |                     | mc17                |                     |                     | L7a                 |                     |                     | L6b(i)<br>L6b(ii)   |  |

| Int2       | Answer   | % Correct | Reasoning                                                                                                                                  |
|------------|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 2000       |          |           | A Hydration: Water is added across a C=C double bond                                                                                       |
| MC         | ٨        | 21        | 🗷 B Hydrolysis: Big molecule splits into smaller molecules with water added across the break                                               |
| 10         | A        | 51        | 区 Dehydration: Water is removed from a molecule leaving behind a C=C double bond                                                           |
| 10         |          |           | ☑D Condensation: Small molecules join together with water removed at the join                                                              |
| 2000       |          |           | $\blacksquare$ A but-2-ene has the formula C <sub>4</sub> H <sub>8</sub> but molecule drawn has the formula C <sub>5</sub> H <sub>10</sub> |
| 2000<br>мс | D        | 71        | $     \squareB$ pent-2-ene: 5 carbons with C=C double bond between C <sub>2</sub> and C <sub>3</sub>                                       |
| 1/         | В        | 1 / 1     | EC but-3-ene is incorrectly named as C=C double bond must have the lowest numbering system                                                 |
| T-         |          |           | 🗷 D pent-3-ene is incorrectly names as C=C double bond must have the lowest number system                                                  |
| 2001       |          |           | 🗷 A Condensation: small molecules join together with water removed at the join                                                             |
| 2001<br>MC | D        | 12        | ☑B Hydration: addition reaction with water added across C=C double bond                                                                    |
| 12         | В        | 42        | EC Hydrolysis: molecule splits into smaller molecules with water added across break                                                        |
| 13         |          |           | 図 Oxidation: Loss of electrons by adding oxygen or removing hydrogen from molecule                                                         |
| 2004       |          |           | 🗷 A Condensation: small molecules join together with water removed at join                                                                 |
| 2004<br>MC | <b>C</b> | 11        | B Dehydration: water is removed and a C=C double bond is left behind                                                                       |
| 11         | C        | 41        | ☑C Hydration: water is added across a C=C double bond in ethane to make ethanol                                                            |
| 14         |          |           | ND Hydrolysis large molecule breaks down with water inserted at the break                                                                  |
| 2005       |          |           | 🗷 A But-2-ene has 4 carbons and molecule shown has 5 carbons                                                                               |
| 2005<br>MC | D        | 02        | ☑B Pent-2-ene has 5 carbons with a C=C double bond between carbons 2 and 3                                                                 |
| 12         | В        | 82        | ⊠C But-3-ene has 4 carbons and molecule shown has 5 carbons                                                                                |
| 12         |          |           | ☑D Pent-3-ene: wrong numbering system as C=C should have lowest number possible                                                            |
| 2000       |          |           | A Cycloalkanes do not have a C=C double bond to decolourise bromine solution                                                               |
| 2000       |          | 17        | B Cycloalkenes do not have the general formula CnH2n                                                                                       |
| 12         | D        | 67        | EC Alkanes do not have a C=C double bond to decolourise bromine solution                                                                   |
| 13         |          |           | $\square D$ Alkenes have general formula $C_n H_{2n}$ and C=C bond decolourises bromine solution                                           |
| 2000       |          |           | IN A hydration would not produce 2-methylbutan-2-ol (-OH group on wrong carbon)                                                            |
| 2009<br>MC |          | 72        | B hydration would not produce 2-methylbutan-2-ol(-OH group on wrong carbon)                                                                |
| 17         | D        | 13        | ⊠C no C=C double bond for water to be added across (hydration)                                                                             |
| 1/         |          |           | ☑D hydration reaction would produce 2-methylbutan-2-ol                                                                                     |
| 2011       |          |           | 🗵 A but-2-ene has 4 carbons only                                                                                                           |
| MC         | D        | 70        | $\square$ B Pent-2-ene has 5 carbons and C=C double bond between C <sub>2</sub> and C <sub>3</sub>                                         |
| 13         | В        | 10        | ⊠C but-3-ene has 4 carbons only (and should be renumbered to but-2-ene)                                                                    |
| 15         |          |           | D Pent-3-ene is an incorrectly named compound as lowest number system has not been used                                                    |
| 2015       |          |           | $\mathbb{E}A$ cyclopentane $C_5H_{10}$ does not decolourise bromine solution as it has no C=C bond                                         |
| мс         | D        | 75        | $\blacksquare$ B cyclopentene C <sub>5</sub> H <sub>8</sub> does not fit the general formula C <sub>n</sub> H <sub>2n</sub>                |
| 17         |          |           | $\mathbb{E}C$ pentane $C_5H_{12}$ does not decolourise bromine solution as it has no C=C bond                                              |
| - /        |          |           | $\square$ D pentene C <sub>5</sub> H <sub>10</sub> decolourises bromine solution and fits general formula C <sub>n</sub> H <sub>2n</sub>   |

| Int2           | Answer            | Reasoning                                                                         |  |  |  |  |  |  |  |
|----------------|-------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 2002           | Alkenes           | Alkenes are a homologous series with a C=C double bond and general                |  |  |  |  |  |  |  |
| 12a(i)         | Aikenes           | formula of C <sub>n</sub> H <sub>2n</sub>                                         |  |  |  |  |  |  |  |
| 2002           | Addition          | Addition Reactions: Molecules are added across a C=C double bond                  |  |  |  |  |  |  |  |
| 12a(ii)        |                   |                                                                                   |  |  |  |  |  |  |  |
| 2005           |                   | $H + H_2O H OHH$                                                                  |  |  |  |  |  |  |  |
| 6000           | hydration         | н−с−с=с−н                                                                         |  |  |  |  |  |  |  |
| OU(II)         |                   |                                                                                   |  |  |  |  |  |  |  |
| 0010           |                   | $H + Br_2$ $H Br Br$                                                              |  |  |  |  |  |  |  |
| 2010<br>5 d    | Addition          | $H-C-C = C-H \xrightarrow{fast} H-C-C-C-H$                                        |  |  |  |  |  |  |  |
| 50             |                   | <br>           <br>                                                               |  |  |  |  |  |  |  |
| 2012           |                   | Addition reactions involve the addition of a compound across a $C=C$              |  |  |  |  |  |  |  |
| 7α             | Hydration         | double bond. Water can be added across a C=C double bond with -                   |  |  |  |  |  |  |  |
|                |                   | H added on one side and -OH added to the other side carbon.                       |  |  |  |  |  |  |  |
|                |                   |                                                                                   |  |  |  |  |  |  |  |
|                |                   | н—с—с—н                                                                           |  |  |  |  |  |  |  |
| 2015           |                   |                                                                                   |  |  |  |  |  |  |  |
| 6h(i)          | H - C - C - C - H |                                                                                   |  |  |  |  |  |  |  |
|                | Н Н ОН            |                                                                                   |  |  |  |  |  |  |  |
|                |                   | $H H_2O$ $H - C - C - H$                                                          |  |  |  |  |  |  |  |
|                |                   | Н Н ОН                                                                            |  |  |  |  |  |  |  |
| 2015           | addition          | Addition reactions happen when as small molecule adds directly across a carbon    |  |  |  |  |  |  |  |
| <b>6b</b> (ii) | or hydration      | Cl2, F2, Br2, I2, H2, H2O, HCl, HBr, HF and HI are all capable of adding across a |  |  |  |  |  |  |  |
| ()             | or nyururion      | double bond.                                                                      |  |  |  |  |  |  |  |

| No      | Nat5 Past Paper Question Bank |               |               |               |               |               |               |                |               |               |               |               |               |               |     |   |
|---------|-------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|-----|---|
| Traffic | : Lights                      |               |               |               | Un            | it 2.         | 1c /          | Alke           | nes           |               |               |               | J             | ABC           | che | m |
| Outcome | 2000                          | 2001          | 2002          | 2003          | 2004          | 2005          | 2006          | 2007           | 2008          | 2009          | <u>2010</u>   | <u>2011</u>   | 2012          | <u>2013</u>   |     |   |
|         | <u>Credit</u>                 | <u>Credit</u> | <u>Credit</u> | <u>Credit</u> | <u>Credit</u> | <u>Credit</u> | <u>Credit</u> | <u>Credit</u>  | <u>Credit</u> | <u>Credit</u> | <u>Credit</u> | <u>Credit</u> | <u>Credit</u> | <u>Credit</u> |     |   |
| 11      |                               |               |               |               |               |               |               |                |               |               |               |               |               |               |     |   |
| 12a     |                               |               |               |               |               |               |               |                |               |               |               |               |               |               |     |   |
| 13a     |                               |               |               |               |               |               |               |                |               |               |               |               |               |               |     |   |
| 12b     |                               |               |               |               |               |               |               |                |               |               |               |               |               |               |     |   |
| 13b     |                               |               |               |               |               |               |               |                |               |               |               |               |               |               |     |   |
| 14a     |                               |               |               |               |               |               |               |                |               |               |               | 22.           |               |               |     |   |
| 15a     |                               |               |               |               |               |               |               |                |               |               |               | 220           |               |               |     |   |
| 14b     |                               |               |               | 14a(i)        | 20.           |               |               |                |               |               |               |               | 20.           |               |     |   |
| 15b     |                               |               |               | 14a(ii)       | 200           |               |               |                |               |               |               |               | 200           |               |     |   |
| 14c     |                               |               | 16c(i)        |               |               |               |               | <b>16b</b> (i) |               |               |               |               |               |               |     |   |
| 15c     |                               |               | 16c(ii)       |               |               |               |               |                |               |               |               |               |               |               |     |   |

| SG Credit                       | Answer                                                         | Reasoning                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
|---------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| 2002 <i>C</i><br><b>16c</b> (i) | Addition<br>Or<br>Hydration                                    | Addition: molecule adds across the C=C double bond<br>$+ H_2O \qquad \qquad H  OH \\ -H = C = C - H \longrightarrow H - C - C - H \\ -H = H H H H H H H H H H H H H H H H H $                    |  |  |  |  |  |  |  |  |  |  |
| 2002 <i>C</i><br>16c(ii)        | One from:                                                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
| 2003 <i>C</i><br>14c(i)         | addition                                                       | Br2 molecule adds across the C=C double bond                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |
| 2003 <i>C</i><br>14c(ii)        | Br Br H<br>     <br>H—C—C—C—H<br>     <br>H H H                | Bromine on adjacent atoms of carbons which had C=C previously                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
| 2004 <i>C</i><br>20c            | C₅H <sub>8</sub> Br₄                                           | Bromine Br <sub>2</sub> add across a C=C double bond. There are two double bonds in $C_5H_8$ so 2Br <sub>2</sub> molecules (and therefore 4Br atoms) adds to the molecule to form $C_5H_8Br_4$ . |  |  |  |  |  |  |  |  |  |  |
| 2007C                           | Addition                                                       | Addition Reaction: Molecule adds across a C=C double bond                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
| 16b(i)                          | or hydration                                                   | Hydration is the addition of water across a C=C double bond                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
| <sup>2011C</sup><br>22c         | Addition                                                       | H H H H H H H $H-C-C-S-H H H H H$ $H-C-C-S-C-C-I$ $H H H H$ $H H H$ $H H H$ $H H H$ $H H$ $H H$ $H H$ $H H$ $H H$                                                                                |  |  |  |  |  |  |  |  |  |  |
| <sup>2012C</sup><br>20c         | Н соосн₃<br>   <br>Br— <b>C</b> — <b>C</b> —Br<br>   <br>H СН₃ | $ \begin{array}{c} H & COOCH_{3} \\ C = C \\ H & CH_{3} \end{array} + Br-Br \xrightarrow{Br_{2} adds across}_{the C=C double} Br-C - C - Br \\ Br_{1} & H & CH_{3} \end{array} $                 |  |  |  |  |  |  |  |  |  |  |



| Na         | Nat5 Past Paper Question Bank |                               |                 |                 |                               |                   |                 |                               |                 |                 |                               |                               |                 |                 |  |  |
|------------|-------------------------------|-------------------------------|-----------------|-----------------|-------------------------------|-------------------|-----------------|-------------------------------|-----------------|-----------------|-------------------------------|-------------------------------|-----------------|-----------------|--|--|
| Traffic    | : Lights                      | hts Unit 2.1c Alkenes JABCHEN |                 |                 |                               |                   |                 |                               |                 |                 |                               | m                             |                 |                 |  |  |
| Outcome    | 2000<br>General               | <u>2001</u><br><u>General</u> | 2002<br>General | 2003<br>General | <u>2004</u><br><u>General</u> | 2005<br>General   | 2006<br>General | <u>2007</u><br><u>General</u> | 2008<br>General | 2009<br>General | <u>2010</u><br><u>General</u> | <u>2011</u><br><u>General</u> | 2012<br>General | 2013<br>General |  |  |
| 11         |                               |                               |                 |                 |                               |                   |                 |                               |                 |                 |                               |                               |                 |                 |  |  |
| 12a<br>13a |                               |                               |                 |                 |                               |                   | 14b(i)          |                               |                 |                 |                               |                               |                 |                 |  |  |
| 12b<br>13b |                               |                               |                 |                 |                               |                   |                 |                               |                 |                 |                               |                               |                 |                 |  |  |
| 14a<br>15a |                               |                               |                 |                 |                               | 14a(i)<br>14a(ii) |                 |                               |                 |                 |                               |                               |                 |                 |  |  |
| 14b<br>15b |                               |                               |                 |                 |                               |                   | 14a             |                               |                 |                 |                               |                               |                 |                 |  |  |
| 14c<br>15c |                               |                               |                 | 15b             |                               |                   |                 |                               |                 |                 |                               |                               |                 |                 |  |  |

| SG General               | Answer                    | Reasoning                                                                                                                    |  |  |  |  |  |  |  |  |
|--------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                          |                           | Addition: molecule adds across the C=C double bond                                                                           |  |  |  |  |  |  |  |  |
|                          |                           | + H2O H OH                                                                                                                   |  |  |  |  |  |  |  |  |
| 2003 <i>6</i><br>15b     | H <sub>2</sub> O          | $H - C = C - H \longrightarrow H - C - C - H$                                                                                |  |  |  |  |  |  |  |  |
|                          |                           | н'н н'н                                                                                                                      |  |  |  |  |  |  |  |  |
|                          |                           | ethene ethanol                                                                                                               |  |  |  |  |  |  |  |  |
|                          |                           | Hydration: $H_2O$ molecule adds across the C=C double bond                                                                   |  |  |  |  |  |  |  |  |
| 2005 <i>G</i><br>14a(i)  | Addition or hydrogenation | Addition reactions add across a C=C double bond.<br>Addition of hydrogen is also known as hydrogenation.<br>H H + H2 H H H H |  |  |  |  |  |  |  |  |
| 2005 <i>G</i><br>14a(ii) | C4H10                     | $H - C - C - C = C - H \longrightarrow H - C - C - C - C - H$ $H - C - C - C - C - H$ $H - H - H - H$ $H - H - H - H - H$    |  |  |  |  |  |  |  |  |
| 2006 <i>G</i><br>14a     | medium or slow            | Reactivity of halogens decreases down group 7.                                                                               |  |  |  |  |  |  |  |  |
| 2006 <i>G</i><br>14b(i)  | C4H8                      | Butene H H H H H H H H H H H H H H H H H H                                                                                   |  |  |  |  |  |  |  |  |